Parametric calculation CPT
parametric_calculation_cpt.py
import requests
import numpy as np
import pandas as pd
import plotly.graph_objects as go
def get_results(**kwargs):
params = dict(
function_sequence='CPTLiquefactionRobertson',
combine_inputs_results=True,
)
data = dict(
cone_area_ratio=0.8,
water_table_present=True,
water_table=0.7,
remove_loose_sand_criteria=True,
relative_density_constant=350,
sensitivity_constant=7,
constant_volume_friction_angle=32,
is_fine_soil_criteria='ic_cutoff',
liquefaction_max_depth=20,
liquefaction_severity_number_max_depth=20,
lateral_displacement_min_thickness=0,
site_ground_condition='level_ground',
liquefaction_potential_index_method='iwasaki1978',
depth=basic_data['SCPT_DPTH'],
cone_tip_resistance=basic_data['SCPT_RES'],
sleeve_friction=basic_data['SCPT_FRES'],
pore_pressure=basic_data['SCPT_PWP'],
) | kwargs
response = requests.post(
f'{base_url}/function-sequence',
params=params,
json=data,
)
return response
base_url = 'https://www.subsurfaceio.app'
basic_data = pd.read_csv(
f'{base_url}/dash/assets/CPTU-1.csv',
skiprows=9,
nrows=280
)
# MPa to kPa
basic_data['SCPT_FRES'] *= 1000
basic_data['SCPT_PWP'] *= 1000
basic_data = basic_data.replace({np.nan: None})
basic_data = basic_data.to_dict('list')
x = np.arange(0.1, 0.5, 0.05)
y = np.arange(6, 8, 0.25)
z = []
X, Y = np.meshgrid(x, y)
Z = np.full_like(X, np.nan, dtype=float)
x_label = 'peak_ground_acceleration'
y_label = 'moment_magnitude'
z_label = 'liquefaction_potential_index_sum'
res = get_results(
peak_ground_acceleration=np.vstack(np.ravel(X)).tolist(),
moment_magnitude=np.vstack(np.ravel(Y)).tolist(),
).json()['1d'][z_label]
Z[:] = np.reshape(res, X.shape)
fig = go.Figure(data=[go.Surface(x=X, y=Y, z=Z)])
fig.update_layout(
scene=dict(
xaxis_title=x_label,
yaxis_title=y_label,
zaxis_title=z_label
)
)
fig.show()